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We study the modulational instability and spatial pattern formation in extended media, taking the one-
dimensional complex Ginzburg-Landau equation with higher-order terms as a perturbation of the nonlinear
Schrodinger equation as a model. By stability analysis for the original partial differential equation, we derive
its stability condition as well as the threshold for amplitude perturbations and we show how nonlinear higher-
order terms qualitatively change the behavior of the system. The analytical results are found to be in agreement
with numerical findings. Modulational instability mediates pattern formation through the lattice. The main
feature of the traveling plane waves is its disintegration in pulse train during the propagation through the

system.
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I. INTRODUCTION

For over 30 years now, it has been known that stable lo-
calized solutions can exist for certain nonlinear partial differ-
ential equations. The best-known example of such solutions
is solitons, which are localized solutions that occur in purely
dispersive systems such as the nonlinear Schrodinger (NLS)
equation. The NLS equation is a universal model for nonlin-
ear wave propagation that has been studied extensively in
nonlinear optics. Of particular interest is the modulational
instability (MI) and soliton propagation in nonlinear
waveguides and optical fibers [1]. Recent investigations on
the propagation of light pulses through optical fibers [1-3]
and optical fiber laser [4,5] have aroused considerable inter-
est in the study of the nonlinear effect described by the NLS
and higher-order NLS equation [1,6,7] and higher-order
complex Ginzburg-Landau equation [8—10]. The NLS equa-
tion with nonconservative terms added is usually called the
complex Ginzburg-Landau (CGL) equation. During the past
decade, the capacity of light wave systems was dramatically
improved by the impressive developments in laser, amplifier,
and fiber technologies as well as multiplexing techniques.
The better understanding of the underlying physics will lead
to the Tbyte/s operation regime in the next generation of
ultrahigh-speed optical telecommunication systems [1,3].
High bit rates correspond to narrow pulse widths per chan-
nel. Thereby, new physical effects will become important in
the system. When studying ultrashort pulses in optical fibers
and optical fiber lasers, we realized that not only the value of
the second-order dispersion is important, but also its slope
(third-order dispersion), curvature (fourth-order dispersion),
self-steepening, and self-frequency-shift arising from stimu-
lated Raman scattering [1].

Dissipative systems are more complicated than Hamil-
tonian ones in the sense that, in addition to nonlinearity and
dispersion, they include energy exchanged with an external
source. The generic equation that describes dissipative sys-
tems above the point of bifurcation is the CGL equation and
its different modifications [11-17]. A review of experiments
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described by the CGL equation is given in Refs. [16,17]. But
the CGL equation with higher-order terms has been analyzed
less extensively, except that Deissler and Brand [18] have
studied numerically the effect of a nonlinear gradient term,
and Thian er al. [19] have also investigated its exact analyti-
cal front solution. However, they are worth investigating fur-
ther as mentioned by Saarloos and Hohenberg [20], since the
more general model is useful for understanding various ex-
perimental phenomena. Another useful example, from the
standpoint of possible applications, is the optical pulse trans-
mission line. The propagation of picosecond optical pulses in
optical fibers is approximately governed by the NLS equa-
tion. When frequency- and intensity-dependent gain and loss
have to be taken into account for long-distance communica-
tion, the governing equation should be replaced by the cubic
CGL equation [21]. When third-order dispersion is compen-
sated, the equation to describe the propagation of ultrashort
pulses will be reduced to the CGL equation with higher-order
terms [19,20]. Stationary solutions to these equations can
frequently be found by using both analytical and numerical
methods. One of the fundamental problems left is to check
these solutions against their stability, which is essential from
a basic point of view as well as for potential applications. In
particular, in nonlinear optics this question has attracted a
considerable amount of interest during the past several years.
Different kinds of instability may lead to such phenomena as
phase turbulence, bistability, self-oscillation, and the forma-
tion of static or moving patterns. A prominent example is MI,
which is the prerequisite for the formation of spatial or tem-
poral patterns. In an optical fiber, MI of a continuous wave
can be employed for the generation of pulse trains with high
repetition rate [1,3]. Therefore, the aim of this paper is to
study MI for plane waves moving across the system as well
as the propagation of unstable patterns with high repetition
rate. In Sec. II, we report the linear stability analysis of a
plane-wave solution of the CGL equation with higher-order
terms. The stability conditions as well as the threshold am-
plitude are presented. In the next section, the validity of ana-
lytical results is checked by numerical simulations. Section
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IV is devoted to the study of different wave pattern forma-
tion that the nonlinear extended plane wave may display. We
show how the presence of the higher-order term has pro-
found consequences on the dynamics of the CGL equation.
The last section concludes the paper.

II. THE MODEL AND LINEAR STABILITY ANALYSIS

In perturbative analysis of the microscopic equations for
various systems, one encounters complex partial differential
equations that go under the name of “amplitude equations.”
Considered in their own right as model dynamical systems,
we will refer to them as Ginzburg-Landau models [22,23], a
prototype of which is

dft_(bl+icl)V2'r//+fl(|(v[f|2)(//’ (1)

where

Si=fir+ify (2)

is an arbitrary complex function of its argument |¢{?, and b,
and ¢, are real constants. In one dimension, we will also
consider the generalized equation

= by +ic) P+ [P g+ AL (W) vl + [af5( D) 1eb,

3)
where f, and f3 are complex functions. There are clearly
many variants of the above equations, with anisotropic de-

rivatives in higher dimensions, or with other fields coupled
to ¢. The special case

fi=&—(by—icy)[yf* — (bs —ics)|l*, 4)
with e=b;=b3=bs=c5=0, is the NLS equation

dip=ic\ T+ ics| Yy, (5)

and the case c5 # 0 we will call the quintic-cubic Schrodinger
equation. In this case, Eq. (6) models transmission of optical
pulses in a pumped dispersion-decreasing fiber or femtosec-
ond light

dip=ic\ T+ ics| P+ ics| Y. (6)

A model that has been studied in the plasma literature is the
“derivative NLS” equation

bi=fi=f3=0, fo|f?) =50+ 5,4, (7a)

dp=ic i+ d [ (so+ s [P l. (7b)

One can also define a case called the “generalized derivative
nonlinear Schrédinger” equation, obtained from Eq. (3) by
assuming

by=fi,=/f2=13=0, (8)

namely

at¢= iclﬁi¢+ lflz(|¢|2)¢+ ax[er(|¢|2) lﬂ] + ax[f3r(|¢|2) ¢]
)

In this work, we deal with the generalized Ginzburg-Landau
model considered in Refs. [16,18,20],

PHYSICAL REVIEW E 74, 046604 (2006)

2, (10a)

fa=(m,+ imi)|‘r/f

2, (10b)

f3= (nr+ lnz)|¢

where b, ¢, m, and n are real constants. Then Eq. (3) be-
comes as follows:

= e+ (by +ic) P, — (by—ics) |y — (bs —ics)|yf*yr
+(mr_imi)ax(|¢|2¢)+(nr_ini)‘9x(|w|2)¢" (11)

It is important to note the role of the Ginzburg-Landau
equations as model equations. This equation is widespread in
nonlinear physic due to its ubiquitous presence in natural
phenomena. The CGL equation is also used as a test case for
several techniques. Many properties of nonequilibrium sys-
tems are encountered in these equations, and indeed many
hard problems, such as the existence and interaction of de-
fects and coherent structures, or the appearance of chaos,
may profitably be addressed in the simple framework pro-
vided by these equations. However, it is only as a perturba-
tive expansion valid in a small region near threshold that
they provide a qualitative description of real experimental
systems, and results may be even qualitatively misleading if
applied far from threshold.

If the last two terms on the right-hand side are neglected,
Eq. (11) reduces to the quintic equation, whose dynamical
behaviors have extensively been investigated (see, for ex-
ample, Refs. [16,19,24,25]). Within the context of nonlinear
optic, the discrete CGL (DCGL) equation arises in the de-
scription of semiconductor laser arrays [26,27], where the
quintic term can account for the gain and nonlinear satura-
tion of the lasing medium. The DCGL equation can also
describe the dynamics of an open Bose-Einstein condensate.
In this case, the lattice potential is created by the interference
of two optical standing waves [28], and thus solitons of the
DNLS equation are known to exist. The dissipation of the
Bose-Einstein condensate naturally occurs in an open con-
densate, while gain can result from the interaction between
the condensed and the uncondensed atoms [29,30]. As a
physical system described by the quintic CGL equation, one
may consider a soliton fiber with nonlinear polarization-
dependent losses (which is equivalent to fast saturable ab-
sorption action [31-33]). In this case, the time-localized
pulse is supported by the nonlinear gain and energy due to
three effects: spectral filtering, linear losses, and the quintic
stabilizing term. So a stable stationary soliton state may be
formed as a result of the balance between nonlinear gain,
spectral filtering, and the quintic stabilizing term. It is quite
remarkable that, in the normal dispersion regime, the stable
solutions of the cubic-quintic CGL equation exhibit an im-
portant qualitative agreement with the experimental observa-
tion of a nearly exponential growth of pulse energy with the
absolute value of the average dispersion [34]. However, there
are few corresponding studies in the presence of higher-order
terms f, and f3. Note that the model parameters are generally
dependent on the selected physical systems. For propagation
of nonlinear light pulses in optical systems, ¢(x,t) is the
complex envelope of the electric field, 7 is the normalized
propagation distance, and x is the retarded time. The param-
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eters £>0 (£<0) represent the linear gain (loss), c; is the
group velocity dispersion, c; is the nonlinear Kerr effects, b,
describes the effect of spectral limitation due to gain
bandwidth-limited amplification and (or) spectral filtering
[which are inversely proportional to gain and (or) spectral
filtering bandwidth, respectively], b5 accounts for the nonlin-
ear gain [and (or) absorption] processes, bs and c¢s describe
the saturable effects of the nonlinear gain [and (or) absorp-
tion] and nonlinear dispersion term, and 7, and n; are the
nonlinear gradient terms that result from the time-retarded
induced Raman process. In fact, n; is usually responsible for
the self-frequency shift. Usually, m; and n, are neglected in
optical transmission systems because they are much smaller
than m, and n;.

As is well known, Eq. (11) may also be applied to de-
scribe stationary beam propagation in planar optical
waveguides. In the latter case, the variable x stands for the
transversal spatial coordinate. Equation (11) has an exact
continuous-wave solution,

lﬂ(x,t) — lﬂoeioo(x‘t),

in which the wave number k and the angular frequency w of
the carrier are constants satisfying

0y(x,1) = kx — wt, (12)

&= by +ic)[ .+ 2ikd,] - [(by —ic3) = 2(bs —ics)| o)1 (p+ @)

+(n,+in) (de + &),
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w=c k> = (c3+2m,)|o|* — sy, (13a)

(2m; — by) £ \(by — 2m;)? — 4bs(b,k* — &)

2 _
0 o

(13b)

The nonlinear effects in the solution (12) deal with the fact
that the amplitude |¢|? is not arbitrary (as it is usually for
the linear case) but is a specific function of the wave number
[see relation (13b)] k, for positive values of the right-hand
side of Eq. (13b) with the necessary condition (b;—2m;)?
—4bs(bk*~£)>0.

To discuss the MI of the continuous solution (12) in the
framework of the CGL equation in the presence of higher-
order terms, we look for solutions of Eq. (11) in the form of
small-amplitude excitations of the continuous-wave back-
ground,

lﬁ(x, t) = 11[/0[1 + ¢(x7t)]exp[i0()(-xst)]’ (14)

wherein ¢(x,f) is a complex quantity. Assuming ¢(x,?)
< i, we obtain the equation for the perturbation ¢(x,1),

o>+ (m,+im)[3¢, + b, +2ik(d+ &) ]| th]*
(15)

where * denotes the complex conjugation. Solution of Eq. (15) can be found in the form

d(x,1) = ¢, expli(lx + Q)] + ¢, exp[— i(lx + Q)] (16)

In Eq. (16), ¢, and ¢, are complex constant amplitudes, and () and / represent the angular frequency and the wave number of
the perturbation, respectively. The substitution of Eq. (16) into Eq. (15) leads to a linear homogeneous system for ¢; and ¢,

defined by

(=iQ+ay) ¢ +and, =0,

ay ¢y + (=il +axy)h, =0, (17)

in which

ay == 2kl + P)(by + ic;) = [(by — ic3) + 2(bs — ics) [ 1| ho|* + il (3L + 2k) (m, + im,) + U(n, + in;)|1ho|*],

(18a)

a1p == [(bs = ic3) +2(bs — ics) [ bl + il (1 + 26) G, + imm) + U, + imp) o], (18b)

gy == [(bs + ic3) + 2(bs + ics)| o1 ol = il (= 1+ 2K) (m, = im;) = I(n, = in)| ], (18¢)

Ay = (2kl = P)(by = ic,) = [(b3 + ic3) + 2(bs + ics) || 1| ol* = il 2k = 31)(m, — im;) — 1(n, — in;)| |1 (18d)

The condition for the existence of nontrivial solutions of system (17) gives rise to a second-order equation for the frequency

Q) that represents the dispersion law for the perturbation,

O +aQ+B=0, (19)

where

a=i(ay +ay) and B=aay - ayay,. (20)
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The expression of the discriminant (delta) of Eq. (19) is

PHYSICAL REVIEW E 74, 046604 (2006)

A=A+iB 21)

with

A =[2¢,kl = (n,+ 3m,) || 1> = [I°by + (b3 + 2km; + 2bs|

Dol’T = (b7 + )UK = 17+ 8P (my +m)|o*
+ 2lz(b3b1 - C3C1)| l//0|2 + 4lz(b]b5 - C|C5)| lp0|2 + 4k12(nrcl - nib1)| lp0|2 - 8k12(mrcl - mib|)|lﬂ0|2 - 4lz(m,~n,~ + mr}’lr)| lﬂo

4

)

(22)

B ==2[2ckl = (n,+ 3m)l||*1[2b, + by + 2km; + 2bs| | *1|tho|* + 4kI[ (b3, + c3b1) + 2(bsc + esby)| o1 ol
+ 2042 = 3P) (m, by + myc)) || = 20 (n,bs + nic )| ol > = 41(m b3 — mics)| | * = 81(m,bs — mics)||® + 4(n,bs — nics) |

The solutions of Eq. (19) are given by the following complex
quantities:

Q,=vy+in+(A+iB)"?, (24a)
1 n

Q,=y+in-(A+iB)"?, (24b)

where

2

)

¥ =21kl - (n,+ 3m,)l| ¢y

n=—[by + (by+ 2km; + 2bs| g |*)[1h|*]. (25)

To continue, we shall distinguish two cases each related to
the sign of B. So, when B <0, the roots of A (i.e., i and h,)
help to put the frequencies (), and (), in the explicit form

Oy =y+in+h —ihy=(y+h)+i(np—hy), (26a)

Wy=y+in—h —ihy=(y-h)+i(n+hy), (26b)

in which

1 — 1 T
hy = \IE(A +VA2+B?) and h,= \/5(—14 +VAZ+B?).

(27)

In the case B> 0, the solutions of Eq. (19) are now defined
by the following expressions:

Qi =vy+in—hy—ihy=(y—h)+i(np-hy), (28a)

(23)

Q) =y+in+h +ihy=(y+h)+i(n+h,), (28b)

and lead to solutions that have the same asymptotic behavior
as those derived from relations (26a) and (26b). Due to the
fact that (), and (), are complex quantities, it is not easy to
give their sign. But their imaginary parts contribute to in-
crease the effects of perturbation in the system. Substitution
of Eq. (26a) into Eq. (16) enables us to understand the be-
havior of i{(x,t). Because h, is positive, n—h,<nm+h, al-
ways holds and then this behavior is a function of the sign of
n—h,, which represents the imaginary part of ). Indeed, we
have

¢lei9t — ¢lei011 — ¢lei(y+hl)txe—(77—h2)t — ¢)1€i(y+hl)tx€(h2_”)t.
(29)

Hence, it becomes clear that the asymptotic behavior of Eq.
(16) depends on the sign of the constant 7—h,. If 7<<0, then
h,— 7 is always greater than zero and Eq. (16) increases ex-
ponentially when 7 tends to infinity. The system remains un-
stable under the modulation. But, if >0, the behavior of
Eq. (16) will depend on the sign of the quantity /,— 7. Two
situations appear and are discussed below.

(i) When i, — >0, ie., p—h, <0, ie., Im(Q;) <O0.
(30)

The solution (16) diverges without limit as 7 increases and
the system is said to be modulationally unstable. Therefore,
the difference 7—h, can be written as

1
n—hy=mn- (5{— [2¢1kl = (n, + 3m )| ghp|*T* = (b7 + D)I* = 812(m; + m})|o|* = 212(b3by — e3¢ [ho|* = 412(b1bs — esey) |l

1/2
+ 4k (n,cq — nby) | o|* + 8k (m,cq — mby)|o|* + 412 (mn; + m,n,) | o|* + h0}> (31)

with
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ho=[Pby + (b + 2km; + 2bs| || ol T + (b7 + ¢]) (2k1)* + (A% + BH) 2. (32)

We should stress that the quantity A, is a positive constant. Hence, we have

1
n-h,=n- (5{— [2¢ 1kl = (n, + 3m )|y |*T = (b7 + D)I* = 81(m +m}) || = 202(bsby — cxe))[h|* = 41%(b1bs — esc))| gl

1/2
+ 4k (n,c, — nb))|o|* + 8ki2(m,c, — mb))|o|* + 42 (mmn; + m,n,)| ¢0|4}> ) (33)

We can note that the inequality Im({);)<<O is satisfied as
soon as we have

1
Uk { 5[— 203(b3by — c3c))|gho|* = 483(b1bs — csc )| ol

+ 4kl (n,cy — nby)|o|* + 8kI*(m,c — mb)) ||
1/2
+ 4P (man;+mn)| o' +hs] ¢ <0, (34)

with
hy==[2¢ k= (n,+ 3m) 1| |"T* = 82(m; + my)| o *
— (B2 + DI (35)

Since 7 is a positive quantity, arrangements of Eq. (34) yield

272 —h
(b3b, —c3c)) —r < — (%) <0 (36)

and necessarily
(b3b1—C3C1)+[2(b1b5—C5C1)|(ﬂ0|2]—r<0, (37)
in which the quantity r is given by

r=2k(n,c, —nby) +4k(m,c, — m;b,) + 2(mmn; + mn,)| o>
(38)

Equation (37) represents the MI criterion for Stokes waves in
physical systems described by the CGL equation with
higher-order terms. Moreover, the relation (37) is the well-
known Lange and Newell criterion [35,36]. From Eq. (38),
we remark that the corrective term r depends on the charac-
teristic parameters of the carrier wave (k,||?). Dealing with
the work of Lange and Newell [35] for r=0, it should be
remembered that harmonic waves are subcritical for ccs
—b1b5>0 and are supercritical for c;c5—bb5<<0.

Now, we deduce from Eq. (38) that if >0, then all su-
percritical waves are unstable under the modulation and sub-
critical waves with r>cc5—bbs>0 are also unstable. Fig-
ure 1(a) plots regions of instability in the (m,,n,) plane.
Black areas represent the place where the system develops an
instability. The criterion (37) depends on the amplitude ||*.
This fact allows us to determine the threshold amplitude of
an unstable monochromatic wave for a given wave number,
viz.,

|(v00|2 > |lr/}(),cr|2
_(biby—c\c3) + 2k(n,c) — niby) — 4k(m,c; —mb,)
- 2[(cie5 = bybs) + (min;+m,n,)] .

(39)

From Eq. (39), we see that a plane wave will be unstable to
any modulation provided that the initial amplitude |¢|* ex-
ceeds the threshold | |* defined by Eq. (39). The corre-
sponding threshold amplitude |y |* is depicted in Fig. 1(b)
as a function of higher-order terms m, and n,.

(ii) On the other hand, previous calculations are exploited
to establish from the condition 7—h,>0 [i.e., Im({);)>0]
that

(bsby = c5¢p) +[2(b1bs— cscp| gl 1-r>0,  (40)

This means that Stokes waves that satisfy the condition (40)
are stable under modulation. We deduce from Eq. (40) that if
r<0, all subcritical waves are stable and supercritical waves
with r<cc5—b1b5<0 are also stable under the modulation.

For the sake of comparison, the MI criterion (37) estab-
lished in this work is quite similar to that obtained by Des-
calzi er al. [37] during their study of thermodynamic poten-
tials for nonequilibrium systems. Furthermore, result (38) is
interesting because the present approach to its investigation
is very different from the method based on the Lyapunov
functional developed by Descalzi et al. [37] and also from
the method of cumulative momentum used by Lange and
Newell [35].

III. NUMERICAL SIMULATIONS AND INFLUENCE OF
HIGHER-ORDER TERMS

Linear stability analysis can only determine the onset of
instability and predict qualitatively how the amplitude of the
modulation wave with any perturbation wave numbers grows
at the initial stage of instability. Moreover, linear approxima-
tion around carrier waves must fail for long time scales when
the exponentially growing amplitude of unstable modulation
wave is no longer small in comparison with that of the car-
rier wave. In order to check the validity of our analytical
approach and to determine the evolution of the system be-
yond the instability point, we have performed numerical
simulations of the CGL equation with higher-order terms.
The fourth-order Runge-Kutta scheme is used to integrate
Eq. (11). Most of the simulations are performed with a sys-
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(a) 3 T T T T T

FIG. 1. (Color online) (a) Region of modulational instability in
the (m,,n,) plane. The black areas are unstable. ¢;=0.1, b;=0.5,
c3=0.2, b3=0.9, ¢5=1.0, b5=0.7, m;=-0.02, n;,=0.01, and e=1.0.
(b) Threshold amplitude c¢;=2.5, b;=0.125, ¢3=0.2, b3=0.09, c;
=0.75, bs=0.07, m;=1.02, n,=0.025, and £=1.0.

tem involving N sites with N=256 with periodic boundary
conditions. The accuracy of numerical experiments is exam-
ined by testing different time and space steps. Typically, the
mesh sizes are chosen equal to Ar=0.055 and Ax=0.5. The
wave numbers k and [ have the form k=2wp/N and !
=2mP/N, where p and P are integers lower than N/2.

The initial conditions, which are typically at time #=0, are
obtained by using a complex wave function that can be writ-
ten as

t,x) = (20 + i (1,%). (41)

Here, the upper indexes Re and Im stand for the real and
imaginary part, respectively. We start from a solution of Eq.
(I1) as a plane wave of wave number k, with an amplitude
that is perturbed by a modulation plane wave with wave
number / since we are interested in MI. Thus initially, in our
numerical simulation, the real and the imaginary parts of the
wave function of the plane wave are coherently modulated in
the form

PHYSICAL REVIEW E 74, 046604 (2006)

JR(0,x) = [¢hy + 7 cos(lx)]cos(kx), (42a)

$™(0,x) = [ + 7 cos(lx)Jsin(kx). (42b)

This initial condition is therefore a modulated plane wave
with amplitude ¢, which is derived from the preceding sec-
tion [Eq. (13b)] and the modulation amplitude 7<<y. So,
using the initial condition given in Eq. (42) has revealed that
in this simple coherent modulation form of the amplitude,
this initial condition allows us to study the response of the
system separately for each modulation wave number.

As it is usually performed in a discrete lattice, we will
study here the behavior of the system with the help of the
spatial Fourier transform of i(r,x),

L
m(p,t):f t,x)e’>™PD) (43)
x=0

In nonlinear physical systems, nonlinearity can create addi-
tional modulations. Indeed, an initial linear wave ¢40,x)
=A cos(kx) chosen as an initial condition will immediately
create from the cubic nonlinearity a nonlinear component
cos’(kx). As

(0,x) = A cos(kx) + d cos’(kx)
=|A+ g[l + cos(2kx)] |cos(kx). (44)

A modulation with a wave number /=2k is immediately gen-
erated and should be taken into account to predict the stabil-
ity. These modulations were forgotten in the analytical study
of MI. Modulations that are generated by nonlinearity have
very small amplitudes and we can forget them when the sys-
tem is stable [38]. Of course when the system is in the un-
stable regime, we must take them into account because they
will grow and finally play a crucial role. In order to study the
impact of higher-order terms, we will present the growth rate
of each individual Fourier component obtained by the least-
square fitting of |m(p,)|> over the first few periods during
which the time is expected to grow at the rate of s,— 7.
Figure 2 shows the time evolution of the carrier wave
with wave number k=/16 modulated by small-amplitude
waves with wave numbers [=+7/4. Figures 2(a) and 2(b)
correspond to the particular case in which the higher-order
terms are omitted: m,=m;=n,=n;=0. Here, Eq. (11) becomes
the cubic-quintic Ginzburg-Landau equation [16,25,28]. The
physical parameters are c¢;=-3.0, b;=1.0, ¢3=0.275, by
=0.77, ¢5=2.05, bs=0.75, and £=1.5 in Fig. 2(a), while in
Fig. 2(b) they are equal to ¢;=-3.0, b;=1.0, ¢3=0.275, b4
=0.77, ¢5=0.75, b5=0.1, and £=1.5. According to the insta-
bility criterion (37), the system is predicted to be unstable for
these parameters. This is effectively verified numerically in
the log-linear plot of Figs. 2(a) and 2(b), in which the modu-
lation 3k, which is not taken into account in the initial con-
ditions, displays an exponential decrease at the beginning.
The magnitude of component 3k is the highest one at the
beginning. One can see that the k—1 component, which was
neglected in the linear stability analysis, evolves with the
same amplitude as the one of the carrier wave k. We also
observe that, around units of time in Fig. 2(a) and 50 units of
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FIG. 2. (Color online) Time evolution of the amplitude of the Fourier transform for different parameters. (a) Time evolution of the

amplitude in the absence of higher-order terms for the parameters: c;

=-3.0, b;=1.0, c3=0.275, b3=0.77, ¢5=2.05, b5=0.1, and e=1.5 for

the wave number k=7/16 modulated at wave number /=7/4. (b) Time evolution of the amplitude in the absence of higher-order terms for
the parameters ¢;=-3.0, b =1.0, ¢3=0.275, b3=0.77, ¢5=0.75, b5=0.1, and £=1.5 for the wave number k=m/16 modulated at wave number
I=m/4. (c) Time evolution of the amplitude in the presence of higher-order terms. Same parameters as in (a) but with m,=0.01, m;=0.01,
n,=0.05, and 17;=0.03. (d) Time evolution of the amplitude in the presence of higher-order terms. Same parameters as in (b) but with m,

=0.01, m;=0.01, n,=0.05, and n;=0.025.

time in Fig. 2(b), all the different modes and combination
modes suddenly display a large increasing behavior of their
amplitudes. At this stage, a buildup of the combination
modes is obtained and the system becomes chaotic. This be-
havior is justified by the fact that, although the linear stabil-
ity analysis neglects additional combination mode waves
generated through wave-mixing processes, these, albeit small
at the initial stage, can become significant and drive the sys-
tem into a chaotic regime when the time increases if the
wave numbers fall in an unstable domain.

Now, we take into consideration higher-order terms in the
simulations. Figures 2(c) and 2(d) present the prolonged
simulation of Figs. 2(a) and 2(b), respectively. At first
glance, one can see that the higher-order terms have canceled
the exponential growth of the amplitude obtained in Figs.
2(a) and 2(b). Stability can be achieved if one adds higher-
order terms in the system. As the system is supposed to be
unstable, we see that the magnitude of the combination mode
(k—1) can become the highest one [Fig. 2(c)] or reach the

magnitude of the carrier wave [Fig. 2(d)]. We also see in Fig.
2(c) that the magnitude of the wave oscillates. While the
magnitude of the k£ and k—1 components oscillates with an
ultrashort wavelength, one of the 3k and k+1 components
oscillates with a short wavelength. The reason is that the
initial condition (42) does not take into account the correc-
tion on the phase [38,39].

IV. PATTERN FORMATION OF THE MODEL
UNDER STUDY

Localized wave packets in linear media have a natural
tendency to change their shape and broaden as they propa-
gate, since the modes they are composed of propagate at
different phase velocities. In nonlinear media, this broaden-
ing can be counteracted, resulting in a pulse/beam that does
not change its shape during propagation: a soliton [40]. The
notion of a soliton belongs to the most popular concepts in
physics. Solitons are formed because of the existence of non-
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linear interaction in the system, which cancels the dispersion
and hence allows for the propagation of shape-preserving
objects. In the case of dilute atomic quantum gases, the non-
linearity is determined by the effective interaction between
atoms that can be both repulsive and attractive, while in op-
tics, solitons can be understood as a balance between diffrac-
tion (in the spatial domain) or dispersion (in the time do-
main) and nonlinear self-focusing. Solitary solutions
(solitons) are an important class of solution of nonlinear
equations. There is an important difference between soliton
solutions of Hamiltonian systems and autosoliton solutions
in nonconservative systems [41]. In Hamiltonian systems,
soliton solutions appear as a result of a balance between
nonlinearity and dispersion, and these solutions usually com-
prise a one-parameter family. The generation of autosolitons
is possible when two conditions—the equilibrium between
nonlinearity and dispersion and the equilibrium between dis-
sipation and amplification—are met. The solution satisfying
these requirements simultaneously exists for fixed param-
eters defined by parameters of the equation. For envelope
waves, autosolitons are described by the complex Ginzburg-
Landau equation, which in some limit can be transformed to
the nonlinear Schrodinger equation with complex perturba-
tion. Closely related to the interplays between nonlinearity
and dispersion is the process of MI. It is a symmetry-
breaking instability so that a small perturbation on top of a
constant amplitude background experiences exponential
growth, and this leads to wave breakup in either space or
time. These disintegrations have an envelope function with
shape familiar to the theory of a solitonlike object. While MI
is a crucial issue for soliton instability [1], it is also consid-
ered as a precursor to solitons formation because it typically
occurs in the same parameter region as that where solitons
are observed [1].

In this section, we examine for a variety of equation pa-
rameters the nature of different wave pattern formation that
may be raised up by a MI process in the CGL equation with
higher-order terms. Recently, a first example of MI mediated
pattern formation in an anharmonic lattice was reported by
Burlakov [42]. The reason for the pattern stability is shown
to be closely related to interference of modulation instabili-
ties of constituent spatial modes. We then continue by using
the definition of a wave number given above (i.e., k
=2mp/N and [=27P/N) for the carrier wave and the modu-
lation wave. The system is now made up of 700 sites and we
use the initial condition given by Eq. (42). Now, we look at
the feature of our initial modulated wave through the system.
As a first example, let us consider the parameters c¢;=1.0,
b;=-3.0, ¢3=0.275, b3=0.77, ¢5=0.10, b5=1.05, n,=0.5, &
=1.5, m,=m;=n;=0, k=4m/175, and a long-wavelength
modulation /=4/35. According to the modulational insta-
bility criterion (37), the system is expected to develop an
instability for these parameters. We observe in Fig. 3(a) that
the amplitude of the wave displayed by wave motion is
modulated in terms of a train of small-amplitude short
waves. The wavelength of the train is not uniform along the
chain. At the beginning of the system, the train has an ul-
trashort wavelength that increases at the middle and then
decreases at the end. If we take into account the higher-order
terms that were equal to zero (m,=0.01, m;=0.01, and n;

PHYSICAL REVIEW E 74, 046604 (2006)

18} 1
16} 4
14} |

124

0B |

U4r B

1 1 I 1
@ D 100 200 300 u 400 500 BO0 F00

N .

18¢ -

1EH -

1.4 | ‘ H

12

1

1 1 1 1 I
)y O 100 200 300 . 400 500 600 700

x

FIG. 3. MI leads to solitonlike object. (a) Disintegration of
waves in filament which have the shape of a soliton for the param-
eters C|=1.0, b1=—3.0, C3=O.275, bg=O77, CSZO.IO, b5=1.05, &
=1.5, and n,=0.5 for the wave number k=7/32 and [=4/35. (b)
Effect of higher-order terms on the propagation of pulse train: m,
=0.01, m;=0.01, and n;=0.03.

=0.03), the dynamics of the system changes, as we can see in
Fig. 3(b). The number of trains increases in the system. Each
element of the train has the shape of a soliton object. A
soliton forms when the localized wave packet induces a po-
tential (via the nonlinearity) and “captures” itself in it, thus
becoming a bound state in its own induced potential. In the
spatial domain of optics, a spatial soliton forms when a very
narrow optical beam induces (through self-focusing) a wave-
guide structure and guides itself in its own induced wave-
guide. The relation between MI and solitons is best mani-
fested in the fact that the filaments (or pulse trains) that
emerge from the MI process are actually trains of almost
ideal solitons. Therefore, MI can be considered to be a pre-
cursor to solitons formation. Now, from the parameters of
Fig. 3(a) we increase the value of the saturable effects of
nonlinear gain (bs), which is now equal to 2.05. The wave-
length of the pulse train increases while its amplitude de-
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FIG. 4. Dependence of wave train on the saturable effects of
nonlinear gain term bs. (a) Propagation of wave packets, same pa-
rameters as in Fig. 3(a) but for b5s=2.05. (b) Propagation of wave
packets, same parameters as in Fig. 3(b) but for b5=2.05, n;
=0.025.

creases, as one can see in Fig. 4(a). When the other higher-
terms are present in the system, we obtain a chaotic pulse
train at the beginning, and thereafter the pulse train becomes
uniform. The number of pulse trains has increased here [Fig.
4(b)] and each of them has the shape of a soliton object with
a short wavelength. As a last example, let us consider c;
=1.0, b,=-3.0, ¢3=0.275, b3=0.77, ¢5=0.25, b5=0.75, &
=1.5, m,=0.5, m;=n,=n;=0, k=4m/175, and a long-
wavelength modulation [=47/35. The MI criterion (37) is
also fulfilled for these sets of parameters. The wave pattern
displayed by Fig. 5(a) is that of a chaotic pulse train. The
wave moves with an ultrashort wavelength while the ampli-
tude of the train fluctuates randomly. If we consider the
higher-order terms, we see that the pulse train becomes uni-
form [Fig. 5(b)]. As in the previous section, we can see that
the higher-order terms have stabilized the dynamic of the
system.
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FIG. 5. Wave train. (a) Chaotic pulse train for the parameters
c1=1.0, b;=-3.0, ¢3=0.275, b3=0.77, ¢5=0.25, b;=0.75, e=1.5,
m,=0.5, and m;=n,=n;=0 for the wave numbers k=4m/175 and [
=41/35. (b) Stabilization of pulse train by higher-order terms: m;
=0.01, n,=0.5, and n;=0.025.

V. CONCLUSION

We have revisited the MI and propagation of unstable
pattern within the framework of the complex Ginzburg-
Landau equation with higher-order terms. Based on this
equation and exploiting the Stokes wave analysis, the well
known Lange and Newell criterion for stability (instability)
has been performed. We have obtained that the criterion de-
pends on the sign of the quantity {(b3b,—c3c,)+[2(bbs
—c5¢1)|¥p/*]-r} in which r represents the corrective term.
The analytical results are compared to numerical simulations
and good agreement is obtained. Since the long-time evolu-
tions of nonlinear waves are analytically untractable, numeri-
cal simulations are employed. It reveals that combination
waves generated via wave-mixing processes can have sig-
nificant effects on the dynamic of the system. Higher-order
terms have been used to stabilize the system. MI mediated
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pattern formation in nonconservative terms has been de-
scribed. One of the main effects of MI is the disintegration of
waves into a pulse train, which has the shape of solitonlike
objects. These pulse trains have been obtained in the present

PHYSICAL REVIEW E 74, 046604 (2006)

study. It would be interesting to check the predictions experi-
mentally. Candidates include binary fluid convection, elec-
troconvection in nematic liquid crystals, and high-capacity
optical communications.
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